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1 Introduction

This project aims at developing a real time biological agent detection system which can detect the
presence of living biological agents in the environment. If developed successfully, this system will
be a vast improvement over the existing ones which require several hours to do the detection. This
system will be capable of collecting, analyzing and characterizing the aerosol samples which will
then help in detecting the biological agent attacks.

We first need to develop a model that characterizes the environmental background without
any release of biological agents. Once the background and the noise level can be modeled and
understood, we can learn about any significant change in the environment due to the release of the
biological agents.

2 The MET 1 Data

To measure the baseline conditions, continuous measurements of the aerosol particle size distri-
bution and meteorological information were collected from five different sensors for the period of
28 June to 1 July 1999. These measurements, which are ten seconds apart, bin the particle sizes
in six categories, record the wind speed, wind direction and the temperature of the sensor. Before
performing the analysis, the data was preprocessed in the following way:

The raw data has observations every ten seconds and is relatively sparse. So for all the
variables, we took averages over every 12 observations or 2 minute time span.

All the bins were scaled by the following transformation. . Count is the
frequency in each bin. Sum(count) is the total count across 6 bins. This transformation
helped in changing the counts to numbers between zero and one. Given that bin3, bin4, bin5
and bin6 often had zero counts in them, models that required ratio of bins could not have
been implemented without this transformation.

Wind speed and direction were scaled to have zero mean and one standard deviation.
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The temperature of the sensor was also not included in the analysis because there was very
little variation in the temperature over time.

By doing a separate analysis, we found out that there was significant difference in the obser-
vations during day and night time. So to account for that difference, we included a dummy
variable for day and night.

if day (7am - 7pm)
if night (7pm - 7am)

Similarly, four binary variables were created to reflect the five sensors.
if sensor 2
otherwise
if sensor 3
otherwise
if sensor 4
otherwise
if sensor 5
otherwise

3 Modeling MET 1 Data

3.1 Methodology

Using the above dataset, several different models and methodologies were formulated and analyzed
with the goal of obtaining a stable set of estimated coefficients for the variables described in section
2. We developed a cross validation method, which estimates the coefficients for the training data
and as a new observation is given from the test data, it updates the estimated coefficients. If the
estimated coefficients show lot of variability due to the additional observation, we get an unstable
model. Otherwise the model is stable. The instability of the model can also be measured by the
prediction error which is the difference between the actual value of and the estimated value
of . The prediction error is expected to be random and centered around zero. In our model,
the response variable if there is no biological agent release and otherwise. Given
this preliminary analysis is being done to just characterize the background, we only have data on

. The traditional statistical time series models did not perform very well due to the lack of
information on the response variable and excessive variability in the counts as a function of time.
The following model was used for the aerosol data analysis.

d(v) = function of input variable
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Choose such that the following sum of squares between and its prediction from the model
is minimized.

where is the expectation operator.
The above optimization problem gives the following adaptive functional structure.

where is the next moving set of coefficients based on the previous set, and = (1/number
of variables in x) and is the transpose of a matrix.

To obtain the initial guess of the coefficients, , we use the training data such that

Once this is calculated, use the test data in blocks of measurements to update the coefficients
and the prediction error which is measured by .

This model was used with different combinations of matrices to characterize the background.
The parameter estimates of the model for the unperturbed environment will help us later detect the
presence of biological agents.

3.2 Results

We tested the data using two different training sets. One in which the training data is taken from
the first 4 sensor files and the test data is from part of the 4th and all the 5th sensor files. There is
no overlap between the training and the test data. The other set had training data from each sensor
file and test data also from each sensor file. Again there is no overlap between training and test
data. In both cases, we found that the results were similar and stable.

The following models give the desired results of stable coefficients and a random prediction
error with zero mean. All the variables have been transformed as explained in section 2 of this
report. The training dataset has 5000 data points and the test data 1120 data points.

Model 1: = bin1, bin2, bin3, wind speed, wind direction, , , , , .
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Figure 1a: Coefficient Estimates of Model 1
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Figure 1b: Prediction Errors for Model 1
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Model 2: = bin1/bin2, bin2/bin3, wind speed, wind direction, , , , , .
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Figure 2a: Coefficient Estimates of Model 2
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Figure 2b: Prediction Errors for Model 2
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Given that bin4, bin5 and bin6 had very sparse data, the counts of bin4, bin5, bin6 were
collapsed together and added to bin 3. Model 1 and Model 2 were re-estimated using the
collapsed bin 3 but no significant change appeared in the values of the coefficients. The
reason being that bin 4, bin5 and bin6 have very little information in them. Majority of those
values were zero.

Model 3: = bin1, bin2, wind speed, wind direction, , , , , . Here instead
of , we used bin3 as the response variable.
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Figure 3a: Coefficient Estimates of Model 3
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Figure 3b: Prediction Errors for Model 3

According to Figure 1a, 2a and 3a, the variables like wind speed, wind direction, , , ,
and contribute very little in characterizing the response variable. All of their coefficients

are close to zero. However, removing these does increase instability, therefore they remain viable
terms in the model. The main determinants are the frequencies in the first three bins which always
have non zero coefficients.

3.3 Some Unsuccessful Models

The following models resulted in unstable coefficients and were considered unsuccessful.

Collapsed counts of bin4, bin5 and bin6 into bin4 and included bin4 in the analysis. =
bin1, bin2, bin3, bin4, wind speed, wind direction, , , , , .

Included a constant in the coefficients. = constant, bin1, bin2, bin3, wind speed, wind
direction, , , , , .

Ratios of the bins which included bin4, bin5 and bin6 e.g. = bin1/bin2, bin3/bin4,
bin5/bin6, wind speed, wind direction, , , , , .

Used the raw counts in bins without scaling and transforming as explained in section 2.

Traditional time series models, modeling bin counts as a function of time.
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3.4 Summary of Coefficients and Prediction Errors

Tables 1,2 and 3 show the summary statistics of estimated coefficients and prediction errors for the
models 1,2 and 3 respectively. After training the data on first 5000 observations, the three models
were re-estimated 1120 times by adding one observation at a time. By observing the minimum,
maximum, variance etc. of the coefficients, it is apparent that the coefficients are extremely stable
in all the cases. The variance of all the coefficients is almost zero in all the three models. All the
prediction errors have a mean close to zero.

Table 1

Summary Statistics of the Coefficients and Prediction Error of Model 1

Summary of the Estimated Coefficients, Observations = 1120
Min. 1st Qu. Median Mean 3rd Qu. Max. Variance

4.183e-01 4.186e-01 4.187e-01 4.187e-01 4.189e-01 4.190e-01 4.031952e-08
4.178e-01 4.179e-01 4.180e-01 4.180e-01 4.182e-01 4.184e-01 3.198208e-08
5.822e-01 5.825e-01 5.826e-01 5.826e-01 5.828e-01 5.829e-01 3.318152e-08
-6.248e-05 -6.077e-05 -5.910e-05 -5.825e-05 -5.767e-05 -5.116e-05 1.059726e-11
-2.166e-04 -2.145e-04 -2.135e-04 -2.135e-04 -2.128e-04 -2.101e-04 2.269010e-12
4.750e-04 4.766e-04 4.778e-04 4.810e-04 4.809e-04 4.960e-04 4.315627e-11
1.862e-03 1.866e-03 1.872e-03 1.873e-03 1.877e-03 1.890e-03 5.895899e-11
-2.700e-05 -1.860e-05 -1.556e-05 -1.757e-05 -1.450e-05 -1.314e-05 1.905561e-11
-1.691e-03 -1.674e-03 -1.671e-03 -1.674e-03 -1.671e-03 -1.667e-03 3.754893e-11
1.328e-03 1.425e-03 1.434e-03 1.429e-03 1.445e-03 1.460e-03 6.509778e-10

Summary of the Prediction Error

-0.0044480 -0.0010500 -0.0002062 -0.0001817 0.0006204 0.0091600 1.842262e-06
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Table 2

Summary Statistics of the Coefficients and Prediction Error of Model 2

Summary of the Estimated Coefficients, Observations = 1120
Min. 1st Qu. Median Mean 3rd Qu. Max. Variance

0.508800 0.509700 0.510300 0.510300 0.511300 0.511500 8.924762e-07
1.057000 1.057000 1.057000 1.057000 1.057000 1.057000 3.953955e-08
-0.002523 -0.002483 -0.002476 -0.002474 -0.002471 -0.002416 4.729647e-10
0.001550 0.001568 0.001637 0.001640 0.001697 0.001760 4.387264e-09
0.004925 0.004950 0.004967 0.004968 0.004989 0.005018 5.573793e-10
-0.014550 -0.014540 -0.014450 -0.014450 -0.014390 -0.014310 7.447432e-09
-0.001956 -0.001922 -0.001884 -0.001879 -0.001821 -0.001812 2.545509e-09
-0.024240 -0.024110 -0.024030 -0.024020 -0.023880 -0.023860 1.740845e-08
-0.014380 -0.014230 -0.013690 -0.013730 -0.013300 -0.013050 2.199717e-07

Summary of the Prediction Error

-0.035340 -0.012930 -0.005522 -0.005200 0.001324 0.072120 0.0001425064

Table 3

Summary Statistics of the Coefficients and Prediction Error of Model 3

Summary of the Estimated Coefficients, Observations = 1120
Min. 1st Qu. Median Mean 3rd Qu. Max. Variance

0.698600 0.699700 0.700500 0.700600 0.701800 0.702100 1.447957e-06
1.038000 1.038000 1.038000 1.038000 1.038000 1.039000 5.637011e-08
-0.002363 -0.002325 -0.002301 -0.002306 -0.002291 -0.002248 6.568119e-10
0.002473 0.002494 0.002528 0.002542 0.002575 0.002658 3.063131e-09
0.004073 0.004103 0.004125 0.004124 0.004149 0.004179 7.981963e-10
-0.015750 -0.015730 -0.015650 -0.015650 -0.015590 -0.015520 6.212995e-09
-0.001749 -0.001724 -0.001684 -0.001686 -0.001645 -0.001632 1.608052e-09
-0.019060 -0.018930 -0.018830 -0.018840 -0.018700 -0.018670 1.756437e-08
-0.015900 -0.015580 -0.015100 -0.015130 -0.014690 -0.014440 2.331910e-07

Summary of the Prediction Error

-0.039150 -0.013750 -0.006141 -0.005655 0.001224 0.062070 0.0001568749
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4 Distribution Fitting of the MET 1 Data

4.1 Methodology

The counts in each bin (1-6) form a histogram of the data that was fit to several likely candidate
probability distributions. The fitting was done using Matlab software because of its built in routines
for various probability distribution functions (PDFs). The distributions fitted were:

exponential

beta

gamma

weibull

lognormal

The histogram of the data, either for each sensor or for the combination of all five sensors, had
the features of an exponential decay, with a long tail that actually began to increase for the last bin
(a shape). We assumed that this increase in counts for bin 6 was an artifact of the measurement
process and that had higher bin resolutions been possible, the tail would continue on its decreasing
trend. Therefore, it was not necessary to fit a distribution whose tail turned upwards. However,
such a shape is possible with a beta distribution. Therefore, it was chosen.

Another feature of the histogram of the data was the behavior at 0 micron particle size and 0
counts (relative frequency). If one assumes that this is the true intercept, then unimodal distribu-
tions which begin at (0, 0) and rise sharply to capture the very high frequency counts in the first
bin are potential candidates for fitting. The lognormal, weibull, gamma and beta can exhibit such
behavior. It should be noted that the beta and weibull can also be shaped in a reverse , like the
exponential, such that the relative frequency count is infinity at particle size 0 microns.

Therefore, the beta was chosen for its flexibility in possible shapes: reverse , , and unimodal
with intercept (0, 0). The lognormal was chosen for it potential as indicated from previous studies.
The exponential was chosen to capture the basic decay shape of the data, reverse . The weibull
is a more general form of the exponential, making it a viable candidate. Finally, the gamma was
chosen for its potential of capturing the tail behavior indicated by the histogram of the data.

While other distributions are certainly viable candidates, time restrictions prevented a more
thorough investigation of these and of general distribution families such as the Pearson families or
the exponential family (of which each of these chosen five is a member).

To test the goodness of the fits of these five distributions to the data, a Kolmogorov-Smirnov
(KS) one-sample, two sided-test was proposed (as found in SPLUS ). While other tests for com-
paring distributions are available (such as those based on Kullback-Liebler information or Jeffery’s
measure), time did not permit programming them for use.
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4.2 Results

While fits were done for all five sensors, individually, for the five PDFs, as with the modeling
efforts in the previous sections, only the results for the combined sensor data are listed here. Be-
cause of software limitations, the counts for all bins were divided by 100 for the fitting and plotting.
Table 4 shows the parameter values for each of the PDF fits.

Table 4

Parameters of Fitted Distributions

Probability Distribution Parameter(s)

beta ,
lognormal ,

weibull ,
gamma ,

exponential

Mathematica was used to plot the distribution fits along with the data fits. Figures 4a-e show
each of the five PDFs as dashed curves with the MET1 data as a solid curve. The particle sizes
(microns) were normalized (to fall between 0 and 1) for fitting and plotting the beta distribution,
to accommodate the fact that the two parameter beta ranges from 0 to 1. This rescaling is a
disadvantage in using the beta distribution.

Visually the lognormal peaks too high and tails off too slowly for the data. While the weibull
peaks too low. The exponential decay is not quite in alignment with the data’s decay, but it is good
at capturing the lower tail. The gamma also produces a reasonable fit all around, as does the beta.
The beta does the best job capturing the tail, while also capturing the decay and the peak.

Kolmogorov-Smirnov tests for goodness of fit were run to determine if any of the five distribu-
tion fits, statistically matched the total particle size counts. Using a 5 significance level for the
two-sided test, none of these distribution fits matched the data.

5 Future Studies

To fully test the models from section 3 and determine their viability for discrimination of releases,
release data is required. At this point we can only speculate that setting will produce
different coefficients from those found in models where . Nonetheless, the models are
available for such an exercise should release data be available in future studies.

UV background data was made available for similar analyses. However, time and money for
the project ran out before models and/or distributions could be fit to that data. Again, the ultimate
test of such models would be testing them against release data.
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